基于高分遥感数据的森林郁闭度估测方法研究  

Estimation method of forest canopy density based on high resolution remote sensing data

加关注

作  者:杨妍婷 YAN GYanting(College of Information Engineering,Zhejiang A & F University,Lin'an Zhengjiang311300,China)

机构地区:[1]浙江农林大学信息工程学院,浙江临安311300

出  处:《智能计算机与应用》2019年第2期67-72,共6页INTELLIGENT COMPUTER AND APPLICATIONS

摘  要:森林郁闭度是研究森林生态系统和了解森林资源状况的重要参数,而传统的实地测量方法效率较低下,且仅能获取小范围的一些具有代表性的数据,不利于研究大范围或区域内郁闭度的空间分布及变化。为了估算森林郁闭度,分析其与遥感影像因子之间的相关性,本文以河北省滦平县巴克什营镇和长山峪镇为研究区域,采用分辨率较高的高分一号(GF-1)数据,结合SRTM DEM数据的地形因子,对该地区的森林郁闭度进行反演。本文在系统整理分析和评价国内外森林郁闭度相关研究文献的基础上,选择了红波段、近红外波段、亮度、绿度、黄度等14个因子作为自变量参与构建多元逐步回归(Multivariable Stepw ise Regression,MSR)、随机森林(Random Forest,RF)和Cubist三种模型,对该地郁闭度进行估测。实验结果表明,基于机器学习的随机森林和Cubist算法结果要优于传统的多元逐步回归算法,各项评价指标显示其中Cubist回归算法在该研究区的拟合效果最好。多元逐步回归(MSR)算法成熟简单,应用广泛,但模型不稳定,反演精度不高,不适用于大区域的郁闭度估算;随机森林(RF)处理大数据速度快,但高值低估和低值高估的情况比较严重,增大了郁闭度估测误差;Cubist在预测连续值方面很成功,使用最近邻样本来调整规则预测结果,模型较稳定,能够得到较为准确的预测数值,不过需要花费很长时间进行计算。Forest canopy density is an important parameter for studying forest ecosystem and understanding forest resources.Traditional field measurement methods are inefficient and can only obtain some representative data in a small range,which is not conducive to the study of spatial distribution and change of forest canopy density in a large area or region. In order to estimate forest canopy density and analyze its correlation with remote sensing image factors,this paper takes Bakeshiying Town and Changshanyu Town in Luanping County of Hebei Province as the research area,and uses high resolution GF-1 data,combined with SRTM DEM data topographic factors,to invert forest canopy density in this area. On the basis of systematically analyzing and evaluating the related literatures of forest canopy density at home and abroad,14 factors,such as red band,near infrared band,brightness,greenness and yellowness,are selected as independent variables to participate in the construction of three models: multi-variable Stepwise Regression( MSR),Random Forest( RF) and Cubist,and the canopy density is improved. The experimental results show that the results of random forest and Cubist algorithm based on machine learning are better than those of traditional multiple stepwise regression algorithm. The evaluation indexes show that Cubist regression algorithm has the best fitting effect in this research area.Multivariate stepwise regression( MSR) algorithm is mature and simple,and widely used,but the model is unstable,the inversion accuracy is not high,and it is not suitable for estimating canopy density in large areas;Random Forest( RF) can process large data quickly,but the situation of overestimation and underestimation is serious,which increases the estimation error of canopy density;Cubist is very successful in predicting continuous values,and uses the nearest neighbor sample to adjust the rules. The prediction results show that the model is stable and can get more accurate prediction values,but it takes a long time to calculate.

关 键 词:森林郁闭度 GF-1 号影像 图像融合 机器学习 统计回归 参数反演 

分 类 号:S771[农业科学—森林工程;农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象